Naoki Masuyama, Ph.D.

Assistant Professor

Computational Intelligence Laboratory
Dept. of Computer Science and Intelligent Systems
Graduate School of Engineering
Osaka Prefecture University

E-mail: masuyama (at) cs.osakafu-u.ac.jp
Address: 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
Phone: +81-72-254-9198
FAX: +81-72-254-9825


GitHub
Google Scholar
dblp computer science bibliography



I graduated from Nihon University, Chiba, Japan in 2010, and I received the M.E. degree from Tokyo Metropolitan University, Tokyo, Japan in 2012. Since April 2016, I obtained my Ph.D. degree from Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.
After obtaining my Ph.D., I worked as a postdoctoral research fellow from August 2016 until August 2017 at University of Malaya, Malaysia. Currently I am an Assistant Professor in Graduate School of Engineering, Osaka Prefecture University, Japan.

Education
March 2013 – April 2016 Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia.
(Advisor: Prof. Dr. Chu Kiong Loo)
(Thesis title:Quantum-inspired associative memories for incorporating emotion in a humanoid)
April 2010 – March 2012 Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan.
(Advisor: Prof. Dr. Naoyuki Kubota)
April 2006 – March 2010 Department of Aerospace Engineering, Graduate School of Science and Technology, Nihon University, Chiba, Japan.

Professional
October 2017 – Present Assistant Professor, Graduate School of Engineering, Osaka Prefecture University, Japan.
August 2016 – August 2017 Post Doctoral Research Fellow, Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.
April 2012 – June 2016 Research Assistant, Faculty of Computer Science and Information Technology, University of Malaya, Malaysia.

Awards Grant and Fund


Journal Papers

(in English)
    2021
  1. N. Masuyama, Y. Nojima, C. K. Loo, and H. Ishibuchi, "Multi-label classification via adaptive resonance theory-based clustering," 2021, Under Review.
  2. 2020
  3. Y. Liu, H. Ishibuchi, G. G. Yen,Y. Nojima, and N. Masuyama, "Handling imbalance between convergence and diversity in the decision space in evolutionary multi-modal multi-objective optimization," IEEE Transactions on Evolutionary Computation, vol. 24, no. 3, pp. 551-565, June 2020.
  4. Y. Liu, H. Ishibuchi, N. Masuyama, and Y. Nojima, "Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts," IEEE Transactions on Evolutionary Computation, vol. 24, no. 3, pp. 439-453, June 2020.
  5. 2019
  6. N. Masuyama, C. K. Loo, H. Ishibuchi, N. Kubota, Y. Nojima, and Y. Liu, "Topological clustering via adaptive resonance theory with information theoretic learning," IEEE Access, vol. 7, no. 1, pp. 76920-76936, December 2019.
  7. H. A. Kakudi, C. K. Loo, F. M. Moy, and N. Masuyama, "Diagnosing metabolic syndrome using genetically optimised Bayesian ARTMAP," IEEE Access, vol. 7, no. 1, pp. 8437-8453, December 2019.
  8. N. Masuyama, C. K. Loo, and S. Wermter, "A kernel Bayesian adaptive resonance theory with a topological structure," International Journal of Neural Systems, vol. 29, no. 5, pp. 1850052 (20 pages), June 2019.
  9. 2018
  10. Z. Liu, C. K. Loo, N. Masuyama, and K. Pasupa, "Recurrent kernel extreme reservoir machine for time series prediction," IEEE Access, vol. 6, pp. 19583-19596, December 2018.
  11. Y. Tanigaki, N. Masuyama, and Y. Nojima, "Effect of the number of constraints on the performance of multi-objective evolutionary algorithms," International Journal of Computer Science and Network Security, vol. 18, no.12, pp. 221-231, December 2018.
  12. N. Masuyama, C. K. Loo, and F. Dawood, "Kernel Bayesian ART and ARTMAP," Neural Networks, vol. 98, pp. 76-86, February 2018.
  13. N. Masuyama, C. K. Loo, and M. Seera, "Personality affected robotic emotional model with associative memory for human-robot interaction," Neurocomputing, vol. 272, pp. 213-225, January 2018.
  14. N. Masuyama, C. K. Loo, M. Seera, and N. Kubota, "Quantum-inspired multidirectional associative memory with a self-convergent iterative learning," IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1058-1068, April 2018.
  15. 2017
  16. N. Masuyama, Md. N. Islam, M. Seera, and C. K. Loo, "Application of emotion affected associative memory based on mood congruency effects for a humanoid," Neural Computing and Applications, vol. 28, no. 4, pp. 737-752, April 2017.
  17. 2014
  18. N. Masuyama, C. K. Loo, and N. Kubota, "Quantum-inspired bidirectional associative memory for human-robot communication," International Journal of Humanoid Robotics, vol. 11, no. 2, 1450006 (22 pages), June 2014.
(in Japanese)
    2021
  1. 西原光洋, 増山直輝, 能島裕介, 石渕久生, クラス不均衡データに対するミシガン型ファジィ遺伝的機械学習, 知能と情報(日本知能情報ファジィ学会誌), vol. 33, no. 1, pp. 525-530, 2021.
  2. 面崎祐一, 増山直輝, 能島裕介, 石渕久生, マルチラベル多目的ファジィ遺伝的機械学習の多数目的最適化への拡張, 知能と情報(日本知能情報ファジィ学会誌), vol. 33, no. 1, pp. 531-536, 2021.
  3. 藤井祐人, 増山直輝, 能島裕介, 石渕久生, 2目的問題に変換する分解ベース進化型マルチモーダル多目的最適化アルゴリズム, 知能と情報(日本知能情報ファジィ学会誌), vol. 33, no. 1, pp. 537-542, 2021.
  4. 増山直輝, 坪田一希, 能島裕介, 石渕久生, クラス別FTCAに基づく識別器設計, 知能と情報(日本知能情報ファジィ学会誌), vol. 33, no. 1, pp. 543-548, 2021.
  5. 2020
  6. 橋本龍一, 増山直輝, 能島裕介, 石渕久生, 進化型多目的マルチタスク最適化手法におけるタスク間交叉時の親個体が探索性能に与える影響, 知能と情報(日本知能情報ファジィ学会誌), vol. 32, no. 1, pp. 501-506, 2020.
  7. 入江勇斗, 増山直輝, 能島裕介, 石渕久生, 未知クラスの継続的な学習を可能とするファジィ遺伝的機械学習手法, 知能と情報(日本知能情報ファジィ学会誌), vol. 32, no. 1, pp. 512-517, 2020.

Conference Papers

    2020
  1. N. Masuyama, Y. Nojima, C. K. Loo, and H. Ishibuchi, "Multi-label classification based on adaptive resonance theory," Proc. of 2020 IEEE Symposium Series on Computational Intelligence (SSCI 2020), pp. 1913-1920, Canberra, Australia, December 1-4, 2020.
  2. Y. Yamada, N. Masuyama, N. Amako, Y. Nojima, C. K. Loo, and H. Ishibuchi, "Divisive hierarchical clustering based on adaptive resonance theory," Proc. of 2020 International Symposium on Community-centric Systems (CcS 2020), pp. 1-6, Tokyo, Japan, September 23-26, 2020, doi:10.1109/CcS49175.2020.9231474.
  3. N. Amako, N. Masuyama, C. K. Loo, Y. Nojima, Y. Liu, and H. Ishibuchi, "Multilayer clustering based on adaptive resonance theory for noisy environments," Proc. of 2020 International Joint Conference on Neural Networks (IJCNN 2020), pp. 1-8, Glasgow, UK, July 19-24, 2020, doi:10.1109/IJCNN48605.2020.9207071.
  4. R. Hashimoto, T. Urita, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Effects of local mating in inter-task crossover on the performance of decomposition-based evolutionary multiobjective multitask optimization algorithms," Proc. of 2020 IEEE Congress on Evolutionary Computation (CEC 2020), pp. 1-8, Glasgow, UK, July 19-24, 2020, doi:10.1109/CEC48606.2020.9185871.
  5. Y. Liu, H. Ishibuchi, G. G. Yen, Y. Nojima, N. Masuyama, and Y. Han, "On the normalization in evolutionary multi-modal multi-objective optimization," Proc. of 2020 IEEE Congress on Evolutionary Computation (CEC 2020), pp. 1-8, Glasgow, UK, July 19-24, 2020, doi:10.1109/CEC48606.2020.9185899.
  6. Y. Omozaki, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Multiobjective fuzzy genetics-based machine learning for multi-label classification," Proc. of 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020), pp. 1-8, Glasgow, UK, July 19-24, 2020, doi:10.1109/FUZZ48607.2020.9177804. (Best Student Paper Award)
  7. H. Ishibuchi, T. Matsumoto, N. Masuyama, and Y. Nojima, "Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms," Proc. of 2020 Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 507-515, Cancun, Mexico, July 8-12, 2020.
  8. H. Ishibuchi, T. Matsumoto, N. Masuyama, and Y. Nojima, "Many-objective problems are not always difficult for Pareto dominance-based evolutionary algorithms," Proc. of 24th European Conference on Artificial Intelligence (ECAI 2020), pp. 291-298, Santiago, Spain, June 8-12, 2020.

  9. 2019
  10. H. Ishibuchi, T. Matsumoto, N. Masuyama, and Y. Nojima, "Optimal distributions of solutions for hypervolume maximization on triangular and inverted triangular Pareto fronts of four-objective Problems," Proc. of 2019 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2019), pp. 1857-1864, Xiamen, China, December 6-9, 2019.
  11. N. Masuyama, C. K. Loo, H. Ishibuchi, N. Amako, Y. Nojima, and Y. Liu, "Fast topological adaptive resonance theory based on correntropy induced metric," Proc. of 2019 IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2019), pp. 2215-2221, Xiamen, China, December 6-9, 2019.
  12. R. Hashimoto, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Effect of solution information sharing between tasks on the search ability of evolutionary multiobjective multitasking algorithms," Proc. of 2019 IEEE Symposium Series on Computational Intelligence (SSCI 2019), pp. 2681-2688, Xiamen, China, December 6-9, 2019.
  13. Y. Omozaki, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Development of a GUI tool for FML-based fuzzy system modeling," Proc. of 20th International Symposium on Advanced Intelligent Systems and 2019 International Conference on Biometrics and Kansei Engineering (ISIS2019 & ICBAKE 2019), pp. 116-121, Jeju Island, Korea, December 4-7, 2019.
  14. T. Fukase, N. Masuyama, Y. Nojima, Y. Liu, and H. Ishibuchi, "Dots-type constrained multiobjective distance minimization problems," Proc. of 20th International Symposium on Advanced Intelligent Systems and 2019 International Conference on Biometrics and Kansei Engineering (ISIS2019 & ICBAKE 2019), pp. 51-56, Jeju Island, Korea, December 4-7, 2019.
  15. Y. Nojima, T. Fukase, Y. Liu, N. Masuyama, and H. Ishibuchi, "Constrained multiobjective distance minimization problems," Proc. of 2019 Genetic and Evolutionary Computation Conference, pp. 586-594, Prague, Czech Republic, July 13-17, 2019.
  16. Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and Y. Han, "Searching for local Pareto optimal solutions: A case study on polygon-based problems," Proc. of 2019 IEEE Congress on Evolutionary Computation, pp. 873-880, Wellington, New Zealand, June 10-13, 2019.
  17. T. Matsumoto, N. Masuyama, Y. Nojima, and H. Ishibuchi, "A multiobjective test suite with hexagon Pareto fronts and various feasible regions," Proc. of 2019 IEEE Congress on Evolutionary Computation, pp. 2059-2066, Wellington, New Zealand, June 10-13, 2019.
  18. H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, "Two-layered weight vector specification in decomposition-based multi-objective algorithms for many-objective optimization problems," Proc. of 2019 IEEE Congress on Evolutionary Computation, pp. 2435-2442, Wellington, New Zealand, June 10-13, 2019.
  19. H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, "Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions," Proc. of 10th International Conference on Evolutionary Multi-Criterion Optimization, pp. 332-345, East Lansing, USA, March 10-13, 2019. (Springer Best Paper Award - 1st Prize)

  20. 2018
  21. Y. Irie, N. Masuyama, Y. Nojima, and H. Ishibuchi, "A preliminary study of Michigan-style fuzzy genetics-based machine learning for class incremental problems," Proc. of 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems, pp. 713-717, Toyama, Japan, December 5-8, 2018.
  22. G. C. Lee, C. K. Loo, and N. Masuyama, "Parameters estimation in topological kernel Bayesian ART using multi-objective particle swarm optimization," Proc. of 2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018), pp. 1595-1601, Bangalore, India, November 18-21, 2018.
  23. T. Matsumoto, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Performance comparison of multiobjective evolutionary algorithms on problems with partially different properties from popular scalable test suites," Proc. of 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018), pp. 765-770, Miyazaki, Japan, October 7-10, 2018.
  24. Y. Nojima, Y. Tanigaki, N. Masuyama, and H. Ishibuchi, "Multiobjective evolutionary data mining for performance improvement of evolutionary multiobjective optimization," Proc. of 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018), pp. 741-746, Miyazaki, Japan, October 7-10, 2018.
  25. Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, "Improving 1by1EA to handle various shapes of Pareto fronts," Proc. of 15th International Conference on Parallel Problem Solving from Nature (PPSN 2018), pp. 311-322, Coimbra, Portugal, September 8-12, 2018.
  26. Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, "A double-niched evolutionary algorithm and its behaviors on polygon-based problems," Proc. of 15th International Conference on Parallel Problem Solving from Nature (PPSN 2018), pp. 262-273, Coimbra, Portugal, September 8-12, 2018.
  27. H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, "Use of two reference points in hypervolume-based evolutionary multiobjective optimization algorithms," Proc. of 15th International Conference on Parallel Problem Solving from Nature (PPSN 2018), pp. 384-396, Coimbra, Portugal, September 8-12, 2018.
  28. H. Ishibuchi, T. Fukase, N. Masuyama, and Y. Nojima, "Dual-grid model of MOEA/D for evolutionary constrained multiobjective optimization," Proc. of 2018 Genetic and Evolutionary Computation Conference (GECCO 2018), pp.665-672, Kyoto, Japan, July 15-19, 2018.
  29. H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, "Dynamic specification of a reference point for hypervolume calculation in SMS-EMOA," Proc. of 2018 IEEE Congress on Evolutionary Computation (CEC 2018), pp.701-708, Rio de Janeiro, Brazil, July 8-13, 2018.
  30. N. Masuyama, C. K. Loo, H. Ishibuchi, Y. Nojima, and Y. Liu, "Topological kernel Bayesian ARTMAP," Proc. of World Automation Congress (WAC 2018), pp. 294-299, Washington, USA, June 3-6, 2018.

  31. 2017
  32. Z. Y. Liu, C. K. Loo, N. Masuyama, and K. Pasupa, "Multiple steps time series prediction by a novel recurrent kernel extreme learning machine approach," Proc. of 9th International Conference on Information Technology and Electrical Engineering (ICITEE 2017), SIG5.5, Phuket, Thailand, October 12-13, 2017.

  33. 2016
  34. C. W. Hong, C. K. Loo, and N. Masuyama, "Multi-channel Bayesian ART for robot fusion perception," Proc. of 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), pp. 1-5, Athens, Greece, December 6-9, 2016. (DOI: 10.1109/SSCI.2016.7850240)
  35. N. Masuyama, and C. K. Loo, "Growing neural gas with correntropy induced metric," Proc. of 2016 IEEE Symposium Series on Computational Intelligence (SSCI 2016), pp. 1-7, Athens, Greece, December 6-9, 2016. (DOI: 10.1109/SSCI.2016.7850247)
  36. N. Masuyama, and C. K. Loo, "An iterative incremental learning algorithm for complex-valued Hopfield associative memory," Proc. of 23rd International Conference on Neural Information Processing (ICONIP 2016), pp. 423-431, Kyoto, Japan, October 16-21, 2016.

  37. 2015
  38. Z. Rasool, N. Masuyama, Md. N. Islam, and C. K. Loo, "Empathic interaction using the computational emotion model," Proc. of 2015 IEEE Symposium Series on Computational Intelligence (SSCI 2015), pp. 109–116, Cape Town, South Africa, December 7-10, 2015.
  39. N. Masuyama, and C. K. Loo, "Robotic emotional model with personality factors based on pleasant-arousal scaling model," Proc. of IEEE 24th International Symposium on Robot and Human Interactive Communication (RO-MAN 2015), pp. 19-24, Kobe, Japan, August 31-September 4, 2015. (Best Paper Award Finalist, 5 papers out of 138 papers)
  40. N. Masuyama, and C. K. Loo, "Quantum-inspired complex-valued multidirectional associative memory," Proc. of 2015 International Joint Conference on Neural Networks (IJCNN 2015), pp. 1-8, Killarney, Ireland, July 11-16, 2015. (DOI: 10.1109/IJCNN.2015.7280403)

  41. 2014
  42. N. Masuyama, Md. N. Islam, and C. K. Loo, "Affective communication robot partners using associative memory with mood congruency effects," Proc. of 2014 IEEE Symposium Series on Computational Intelligence (SSCI 2014), pp. 1-8, Orlando, USA, December 9-12, 2014. (DOI: 10.1109/RIISS.2014.7009178)
  43. N. Masuyama, and C. K. Loo, "Quantum-inspired multidirectional associative memory for human-robot interaction system," Proc. of 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014), pp. 1757-1764, Beijing, China, July 6-11, 2014.

  44. 2013
  45. N. Masuyama, C. K. Loo, and N. Kubota, "Human-robot interaction system with quantum-inspired bidirectional associative memory," Proc. of Second International Conference on Robot, Vision and Signal Processing (RVSP 2013), pp. 66-71, Kitakyushu, Japan, December 10-12, 2013.
  46. N. Masuyama, C. K. Loo, and N. Kubota, "Quantum mechanics inspired bidirectional associative memory for human robot interaction," Proc. of the 3rd International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII 2013), GS1-5, Shanghai, China, October 18-21, 2013.

  47. 2012
  48. N. Masuyama, C. S. Chan, N. Kubota, and J. Woo, "Computational intelligence for human interactive communication of robot partners", Proc. of the 12th Pacific Rim International Conference on Trends in Artificial Intelligence (PRICAI 2012), pp. 771-776, Kuching, Malaysia, September 3-7, 2012.

Others

    2020
  1. 木下貴登,増山直輝,能島裕介,石渕久生,クラスタリング手法を用いた適応的分割に基づく進化型多目的最適化アルゴリズムの性能評価,第14回進化計算シンポジウム2020講演論文集,pp. 27-34,岐阜,12月 (2020).
  2. 矢野真綾,増山直輝,能島裕介,石渕久生,制約付き多目的マルチモーダル距離最小化問題,第14回進化計算シンポジウム2020講演論文集,pp. 151-159,岐阜,12月 (2020).
  3. 夏目和弥,増山直輝,能島裕介,石渕久生,複数データを用いた進化型多目的最適化による畳み込みニューラルネットワークのハイパーパラメータ最適化,ファジィシステムシンポジウム2020講演論文集, pp. 41-46,福岡,9月 (2020).
  4. 藤井祐人,増山直輝,能島裕介,石渕久生,2目的最適化問題への変換に基づく進化型マルチモーダル多目的最適化アルゴリズム,ファジィシステムシンポジウム2020講演論文集,pp. 53-58,福岡,9月 (2020).
  5. 面崎祐一,増山直輝,能島裕介,石渕久生,マルチラベル識別問題におけるファジィ遺伝的機械学習の多目的最適化と多数目的最適化の比較,ファジィシステムシンポジウム2020講演論文集,pp. 47-52,福岡,9月 (2020).
  6. 西原光洋,増山直輝,能島裕介,石渕久生,少数派クラスの識別性能を高めたMichigan型ファジィ遺伝的機械学習手法,ファジィシステムシンポジウム2020講演論文集,pp. 367-372,福岡,9月 (2020).
  7. 坪田一希,増山直輝,能島裕介,尼子就都,石渕久生,適応共鳴理論に基づいたトポロジカルクラスタリング手法による識別器設計,ファジィシステムシンポジウム2020講演論文集,pp. 441-446,福岡,9月 (2020).
  8. 2019
  9. 橋本龍一,増山直輝,能島裕介,石渕久生,Multitask MOEA/D のタスク間交叉時における重みベクトルを用いた親個体選択による探索性能への影響調査,第13回進化計算シンポジウム2019講演論文集,pp. 246-253,兵庫,12月 (2019).
  10. 花田泰生,増山直輝,能島裕介,石渕久生,実問題に基づく制約付き多目的最適化問題の最適解集合に関する調査,第13回進化計算シンポジウム2019講演論文集,pp. 163-168,兵庫,12月 (2019).
  11. 西原光洋,増山直輝,能島裕介,石渕久生,少数派クラスの識別性能を高めたMichigan型ファジィ遺伝的機械学習手法,インテリジェント・システム・シンポジウム2019講演論文集,富山,9月 (2019).
  12. 深瀬貴史,増山直輝,能島裕介,石渕久生,2目的最適化問題への変換に基づく制約付き進化型多目的最適化手法,インテリジェント・システム・シンポジウム2019講演論文集,富山,9月 (2019).
  13. 尼子就都,増山直輝,能島裕介,石渕久生,クラスタリング手法における距離尺度の影響調査,ファジィシステムシンポジウム2019講演論文集,pp. 121 -126,大阪,8月 (2019).
  14. 橋本龍一,増山直輝,能島裕介,石渕久生,進化型多目的マルチタスキングにおける他タスクの親個体の選択方法の違いによる探索性能への影響調査,ファジィシステムシンポジウム講演論文集,pp. 59-64,大阪,8月 (2019).
  15. 入江勇斗,増山直輝,能島裕介,石渕久生,クラス増分学習可能なファジィ遺伝的機械学習手法の提案,ファジィシステムシンポジウム2019講演論文集,pp. 53-58,大阪,8月 (2019).
  16. 夏目和弥,増山直輝,能島裕介,石渕久生,遺伝的アルゴリズムによる畳み込みニューラルネットワークのハイパーパラメータ最適化,ファジィシステムシンポジウム2019講演論文集,pp. 47-52,大阪,8月 (2019).
  17. 面崎祐一,増山直輝,能島裕介,石渕久生,Fuzzy Markup Languageを用いたファジィシステムの開発,ファジィシステムシンポジウム2019講演論文集,pp. 1-6,大阪,8月 (2019).

  18. 2018
  19. 荒張巧樹,増山直輝,能島裕介,石渕久生,マルチラベル分類に適応した多目的ファジィ遺伝的機械学習,第12回進化計算シンポジウム2018講演論文集,pp. 43-50,福岡,12月 (2018)
  20. 今田諒,増山直輝,能島裕介,石渕久生,IGDの参照点集合と選好される解分布の対応関係の調査,第12回進化計算シンポジウム2018講演論文集,pp. 99-106,福岡,12月 (2018)
  21. 橋本龍一,増山直輝,能島裕介,石渕久生,進化型多目的マルチタスキングにおけるタスク間の個体情報の伝達による探索性能への影響調査,第12回進化計算シンポジウム2018講演論文集,pp. 345-352,福岡,12月 (2018)
  22. Y. Tanigaki, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Approximation of the Pareto optimal solutions by a neural network based on solutions obtained by evolutionary algorithms," Proc. of the 2018 JPNSEC International Workshop on Evolutionary Computation, 2 pages, Shenzhen, China, September 2018.
  23. R. Imada, Y. Tanigaki, N. Masuyama, Y. Nojima, and H. Ishibuchi, "Adaptation of weight vectors and the neighborhood size in MOEA/D for inverted triangular Pareto fronts," Proc. of the 2018 JPNSEC International Workshop on Evolutionary Computation, 6 pages, Shenzhen, China, September 2018.
  24. R. Hashimoto, N. Masuyama, Y. Nojima, and H. Ishibuchi, "MOEA/D for multi-task multi-objective optimization," Proc. of the 2018 JPNSEC International Workshop on Evolutionary Computation, 2 pages, Shenzhen, China, September 2018.
  25. 入江勇斗,増山直輝,能島裕介,石渕久生,クラス増加問題へのファジィ遺伝的機械学習の適用性の検討,第 34 回ファジィシステムシンポジウム 講演論文集,pp. 578-583,愛知,9月 (2018)
  26. Ryuichi Hashiomoto, Hisao Ishibuchi, Naoki Masuyama, and Yusuke Nojima, "Analysis of evolutionary multi-tasking as an island model," In Companion of Genetic and Evolutionary Computation Conference, pp. 1894-1897, Kyoto, Japan, July 15-19, 2018.

  27. 2017
  28. 深瀬貴史,能島裕介,増山直輝,石渕久生,MOEA/Dに対する制約条件取扱い手法の導入に関する検討,進化計算シンポジウム2017講演論文集,pp. 31-37,北海道,12月 (2017).
  29. 橋本龍一,能島裕介,増山直輝,石渕久生,複数車種の同時最適化問題に対する設計変数取扱い手法,進化計算シンポジウム2017講演論文集,pp. 502-509,北海道,12月 (2017).
  30. 増山直輝,チューキョンルー,個性の影響を受ける情動モデルによる情動的連想記憶モデル,インテリジェント・システム・シンポジウム2017講演論文集,pp. 73-78,岡山,11月 (2017).